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Multi-cue Visual Obstacle Detection for Mobile
Robots

Luis J. Manso, Pablo Bustos, Pilar Bachiller and José Moreno

Abstract—Autonomous navigation is one of the most essen-
tial capabilities of autonomous robots. In order to navigate
autonomously, robots need to detect obstacles. While many
approaches achieve good results tackling this problem with lidar
sensor devices, vision based approaches are cheaper and richer
solutions. This paper presents an algorithm for obstacle detection
using a stereo camera pair that overcomes some of the limitations
of the existing state of the art algorithms and performs better in
many heterogeneous scenarios. We use both geometric and color
based cues in order to improve its robustness. The contributions
of the paper are improvements to the state of the art on single and
multiple cue obstacle detection algorithms and a new heuristic
method for merging its outputs.

Index Terms—autonomous robots, visual navigation, obstacle
detection.

I. INTRODUCTION

OBSTACLE detection is one of the most fundamental
needs for an autonomous navigation system to work.

In order to avoid obstacles, the majority of approaches use
laser or sonic range sensor devices. While sonic sensors are
imprecise, short-sighted and usually unreliable, lidar devices
are expensive. Nowadays, autonomous robots are usually pro-
vided with stereo camera pairs in order to perform tasks such
as object recognition or visual SLAM. Thus, by using camera
pairs also for obstacle detection, the cost of a laser device can
be saved up. While vision systems can detect objects in their
whole visual field, common laser sensors only sweep a plane,
so those objects not intersecting the plane are missed. Two-
axis sweeping lidars or integrated image and lidar sensors are
even more expensive. Besides, lidar sensors are not error free,
they may get wrong measures on shiny, or black objects not
reflecting light as expected[8].

Experimental results show that neither appearance or geo-
metric vision approaches are enough by themselves. Previous
geometric ground-obstacle classifiers produce a high rate of
false positives (e.g. in the borders of the paper sheet of figure
1) if they are not provided with a precise stereo calibration.
Our stereo algorithm, as most geometric approaches, relies
on the homography induced by a locally planar ground. The
matrices coding the homography can be estimated in real time
using the information from the stereo head configuration, or
they can be manually set for a small set of known stereo head
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configurations. Our method is able to work within a consider-
able uncertainty range, performing well even with inaccurate
calibrations. By relying on both geometric and appearance
information in an appropriate way, our algorithm achieves
higher reliability than those just working with one type of
information. In addition, since our method does not use range
sensor devices, it can detect floor downward discontinuities in
addition to obstacles lying on the floor.

There has been previous research on visual detection of
obstacles based on: color [5], [13] and geometric[2], [4], [12]
information. In most of the color based approaches a hue
histogram is created and used to classify pixels as obstacle or
as free space. This is useful on very restricted environments,
but leads to frequent false positives when approaching planar
objects lying on the floor so that the robot can actually
walk over them (see figure 1), and to false negatives as
well (see figure 2). Color based approaches are not useful
on grounds of heterogeneous colors. Geometric, homography
based, approaches do not perform well with non-textured
obstacles (see figure 3).

The most similar works we have found are [6], [15],
where both color and geometric cues are used. However,
they do not present any real improvement over single cue
approaches. They suggest to combine both methods using
OR/AND operators. If using an OR operator, it will fail where
any of its cues get a false positive. If using an AND operator,
it will fail where any of its cues get a false negative. Thus,
despite its simplicity, this kind of cue integration is doomed to
fail because it does not take into account the nature of its cues.
In addition, [6] follows the same color-based classification as
[5], which accuracy is discussed on section III.

Fig. 1: Color-only approaches can lead to false positives.
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Fig. 2: Color-only approaches can lead to false negatives.

Fig. 3: Geometric-only approaches can lead to false negatives.

Our algorithm uses two obstacle detectors, based on two
different visual cues: an appearance cue (color-based) and a
geometric one (based on plane reprojection). Both of them
produce a binary image in which white areas represent obsta-
cles. The stereo cues are gathered in two steps: the first one is
similar to [6], and the second one filters false positives from
the output of the first step. The color-based algorithm also
takes two stages: the first one classify pixels as obstacle if
their color is not present enough in the histogram (in a similar
way as seen in [5]), the second one filters false positives caused
by noise. We also suggest a better alternative to the AND/OR
operators for merging the binary output images. In addition,
improvements to each of the two single cue obstacle detectors
are presented.

The rest of this paper is organized as follows: Sections II
and III describe the classification process using each of the
single cue algorithms, geometric and color-based respectively.
Section IV describes how the fusion of cues is made. Section
V presents the robot platform used, the experiments performed
and their results. Conclusions are detailed in section VI.

II. GEOMETRIC-BASED DETECTION

The geometric-based obstacle detection algorithm is based
on the idea that the floor is approximately planar. Given

this assumption, the floor induces a planar homography be-
tween the two camera images. A planar homography is a
projective geometry transformation that maps projected 3D
points between two image planes assuming that they rest on
a particular plane[1]. Pixels are mapped by premultiplying its
homogeneous coordinates by the homography matrix:

x′ = Hx, (1)

so that for any pixel position in an image, a new position
is determined for the other view point. In other words, the
homography allows us to compute how a plane would be
viewed from another perspective. When the intrinsic and ex-
trinsic parameters of the cameras are known, the homography
matrix can be calculated by using the following equation[1]:

H = K′(R− tnT /d)K−1, (2)

where:
• K and K′ are the intrinsic parameters matrices of the

initial and the new viewpoints, respectively.
• R and t are the rotation matrix and translation vector

that lead from the initial viewpoint to the new one,
respectively.

• n is a normalized vector perpendicular to the plane
inducing the homography.

• d is the distance from the initial viewpoint to the plane.
If the cameras of the robot are whether fixed or its only degree
of freedom is a common pan movement, that movement will
not change the homography, and explicit knowledge of the
intrinsic or extrinsic parameters is not actually needed. In that
case, it is possible to use different methods to directly estimate
the homography matrix for a static configuration [2], [3], [7],
[9], [10].

The initial ground-obstacle classification is done by warping
one of the views to the other and comparing the result of
the warping with the actual image seen in the last point
of view. Under ideal conditions, provided that the camera
can be modeled by the pin-hole model, every warped pixel
corresponding to the floor would have the same value in both
images. However, in real conditions, we have to face the
following problems:

• light reflections.
• camera-camera desynchronization.
• camera-head position sensor desynchronization.
• different camera responses to the same color.
• not perfectly planar floors.
• stereo head pose uncertainty.
• imprecise homography estimation.

In [6], pixels are classified as obstacles if the difference
between its values in the warped image and the actual one
is above a threshold. The quality of this method relies heavily
on the accuracy of the homography, a floor free of light
reflections, and good lighting conditions. If the homography
accuracy is not good enough, false positives often appear on
edges.

Our method divides the classification in two stages in order
to improve the reliability by including a second test. The first
step of our method is similar to the previously seen ([6]), the
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Fig. 4: Upper-left corner: left image. Upper-right corner: right
image, destination point of view. Lower-right corner: left
image homography-warped to the destination point of view.
Lower-left corner: Absolute value of the right image minus
the wapred image. Windows that do not pass the first test (as
the one in red) are verified through a cross-correlation test
(image patches in blue).

only difference is that we resize the input image for the first
stage to reduce the computational cost. Thus, each output pixel
represents a window in the actual input image. Those windows
classified as obstacle by the first stage are then verified or
discarded by the second one.

The aim of the second stage is to filter false positives. In
order to do this, it is tried to find a match for the image
patches of the destination point of view image corresponding
to windows classified as obstacle by the first stage within a
double-sized window in their correspondant position in the
warped image. The match is only searched within a slightly
bigger window in the same position because the image is
already warped (under ideal conditions there would be a
perfect match for every floor-window in exactly the same
position). It is outlined in figure 4. This comparison is carried
out by computing maximum output for cross-correlation. If
the maximum for any of the channels is under a threshold, the
window does not pass the test and it is classified as obstacle.
Color information allows us to differentiate between different
colors that have the same luminance. Here, a relatively low
threshold should be used. The key idea is that it is safer
and more stable to decide based on multiple low thresholds
of different nature that complement each other, than using a
single highly tuned one.

Since only candidate windows are tested, this second
stage improves significantly the classification process without
adding too much computational overload. This improvement
not only decreases the occurrences of false positives on edges
of textured floors, which is the biggest disadvantage of similar
techniques, it also allows to dismiss low objects that do not
actually represent an obstacle for the robot. In any case, no
matter how approximate they are, there will be two different

homographies, the actual homography that the floor induces in
the two cameras, and the homography we are estimating. The
second step allows these two homographies to be reasonably
different without compromising the system.

Unlike shadows, which do not depend on the location of
the observer, light reflections do. While shadows are just low
illuminated areas, light reflections are a different phenomenon
in which the floor acts as a mirror. Thus, light sources
are imaged on different positions depending on the point
of view of the camera, just like any object reflected in a
mirror would. Unfortunately, this highly common phenomenon
makes reflected light sources appear on a non-floor altitude.
Even though they might not be detected and identified as
proper reflections, and despite they can ruin the geometric
classification we can still deal with them due to:

• robots do not actually walk over mirrors, reflections are
diffuse

• the use of polarizing filters reduce reflections
• the second test reduces the impact of the remaining

reflections
The main improvement of this algorithm to previous ap-

proaches is that it is partially immune to inaccurate homo-
graphies. Little variations on the actual homography pro-
duce mostly a translation of the image and little projective
deformation. For every window passing the first test, the
best correlation match is searched in its neighbourhood. If
a window is not an actual obstacle it should have a good
correlation match and should be discarded by the second test.
As outlined before, this problem is very common when using
mobile robotic heads. The scenarios in which this might be
helpful are:

• Loose or wrong camera position estimation: Small
translations or rotations of the robotic head, due to
looseness or small impacts, may change the actual ho-
mography. In such cases, other approaches would give
lots of false positives.

• Motorized stereo configurations: When the homogra-
phy is recalculated in real-time in a stereo system, wrong
pose and angle estimations, due to the imperfections of
hardware or software, may lead to inaccurate homogra-
phies. This would also lead to false positives if using
other approaches.

• Camera desynchronization: Even slight camera desyn-
chronizations often make previous algorithms useless.
This might or might not be common depending on the
hardware used.

Once the second test is finished a binary image where pixels
represent small windows of the original images is obtained.
Assuming that the destination point of view is the one of the
right camera, the process can be summarized as follows:

1) Copy the right image, IR, to a temporal image IT 1.
2) Use H to warp the left image, IL, to IT 1.
3) Compute the absolute value of IT 1 - IR. Store the result

in IT 2.
4) For each window having a pixel over a threshold:

a) If the maximum value for the normalized cross-
correlation value in a bigger window is over a
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threshold for all channels, set the window as floor.
b) Else set the window as obstacle.

The first step can be skipped if, after the algorithm is fin-
ished, pixels outside binocular space are ignored. Optionally,
if a window size resolution is not enough, a flood-fill operation
can be started on the windows that passed the second test after
resizing the output image.

III. COLOR-BASED DETECTION

The color-based obstacle detection is inspired on the ap-
proach seen in [5], pixels are classified based on their presence
in a histogram which is obtained after a training process.
The training consists in the selection of several image regions
of the ground and the computation of a three dimensional
histogram from those image regions. Region selection can be
done manually by a human operator or, if the environment
obstacles are textured (e.g. there are no untextured walls), by
the robot itself selecting floor regions using the geometric-
based classification previously detailed.

Instead of using two separate 1-dimensional histograms as
suggested in [5], we use a single 3-dimensional one. The
use of a three dimensional histogram is justified in terms
of discrimination power. A 3-dimensional histogram is more
powerful than a 1-dimensional one (i.e. a 3-dimensional his-
togram will always have, at least, the same information as a
1-dimensional one) and it is in no means harder to use. Even
several threshold cuts on different 1-dimensional histograms
will always sum up to axis paralell decision boundaries on
corresponding multidimensional histograms. Despite the size
of the histogram goes from n to n3, by using 3-dimensional
histograms we dramatically improve the color classification,
without considerable time implications. Figures 5a and 5b
show the difference of distriminative power graphically.

We build our 3-dimensional histogram with values for
normalized red and green components and an approximated
value of luminance. Depending on the number of bins in
which an axis is divided, we will get a different invariance
for the values stored on it. The more bins an axis has the
less invariance it gets. In particular, luminance invariance is
desirable to some extent, but a complete invariance would
entail a loss of discriminative power.

A reasonable way to build the histogram is to divide the
X and Y axis in 128 bins and 32 bins on the Z axis. Thus,
assuming that pixels are represented as RGB bytes (so their
values range from 0 to 255), the X , Y and Z axis values would
correspond to:

X : 128R/(R+G+B+1) (3a)
Y : 128G/(R+G+B+1) (3b)
Z : (R+G+B)/12 (3c)

Once the histogram is generated, it is low-filtered using a
3x3x3 mask and the training is finished.

Despite most color based obstacle detectors use HSV color
space, we decided not to use it because hue values are
usually very noisy at low saturation or low luminance. While
other approaches as [5], [6] do not take into account pixels
with low saturation, experimental results proved that greyish

(a) Discriminative power of a 2-dimensional histogram.

(b) Discriminative power of two 1-dimensional histograms.

Fig. 5: Comparison between the discriminative power of a
2-dimensional histogram and two 1-dimensional histograms.
This can be extended to a third dimension. The striped area of
figure delimits the boundary of two 1-dimensional histogram
while the grey area delimits the frontier of the 2-dimensional
histogram.

pixels should not be ignored. Obviously, the floor or some of
the obstacles may be gray. Our three dimensional approach
histogram shows better performance in the experiments.

In [15] a similar approach is taken, but it uses a two
dimensional histogram, with normalized red and green values
only. Thus, it is fully luminance invariant, which, as previously
seen, is rarely a desired feature.

As well as in the geometric cue, the classification is divided
in two stages. In the first stage, each pixel is classified
according to the presence of its color in the histogram. If
the quantity is lower than a threshold, the pixel is classified
as obstacle. This threshold can be set as a percentage of the
histogram population so it does not depend on the size of the
training set.

In the second step of the color-based classification the
output is windowized by taking only the pixel with the
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lower value for each window. For this purpose 4-pixel width
windows are used (i.e. a 4x4 window is classified as obstacle
only if every pixel of the window have been classified as
obstacles). This step removes false positive produced by noise.

IV. MULTIPLE CUE OBSTACLE DETECTION

An obstacle detection system based on only one of the
described methods would perform well under certain circum-
stances: planar floor and textured obstacles in the geometric
approach; and disjoint color sets for obstacles and floor in the
color-based one. Since these conditions are seldom found, the
quality of such classifications can be improved by using both
at the same time, taking advantage of the different properties
of the cues. A color-based only classification would often
lead to non desirable classifications such as classifying as
obstacle a paper sheet lying on the floor. On the other hand, a
geometric-based only classification would not see any obstacle
in an untextured wall. We suggest using both cues in order to
produce a higher-quality classification. Nevertheless, we also
claim that merging the results of both classifiers should be
carried in a more sophisticated way than AND/OR operators.

Both, planar perspective mapping and color based cues are
merged in order to get a single binary image as output, where
each pixel is related to one of the windows of the single
cue classifiers. As we will see in section V, the fusion of
cues of different nature allows the robot to navigate through
unstructured as well as structured environments. The only
restriction is that the ground must be locally planar.

The cue fusion process is ruled by the two following
principles:

1) Geometry wins on small obstacles:
Here the main assumption is that a region classified
as obstacle by its color, that is not classified by the
geometry-based obstacle detector, is probably a planar
object lying in the floor (or part of it) which does not
actually represent an obstacle for the robot. Thus, unless
the second principle tells the opposite, they should not be
classified as obstacle. According to this, isolated regions
classified as obstacles by their color, and not by the
geometry-based obstacle detector, are ignored.

2) Color wins on large tall obstacles:
In indoors environments walls are very common. Since
usually they are untextured, the planar perspective map-
ping approach might not classify them correctly. Big re-
gions reaching the horizon line are suspicious enough to
assume they are untextured walls (or any other obstacle).
This kind of regions are classified as obstacles despite
they are not detected by the geometry-based algorithm.
Thus, the whole connected area is classified as obstacle.

Following this two principles the visual field of the robot is
divided in two areas, the one under the horizon line and the one
above it. In the lower zone the geometric cue prevails, while
in the upper one it is the opposite. In case that the connected-
area of a region classified as obstacle by its color comprise
part of both zones, the whole connected area is classified as
obstacle. This particular aspect can be seen in figure 6.

It is reasonable to think that there is no point classifying by
their color the image zone above the horizon line because it is

already known that its pixels correspond to obtacles assuming
a planar floor. Nevertheless, because connected-areas may span
part of both zones, the method provides new information. This
is specially important in order to avoid walls or dodge tall
untextured obstacles.

Fig. 6: This picture shows the horizon line (in red) and the
connected-areas classified by their color that span part of the
under-horizon area (dashed).

The horizon line of a plane can be calculated as the image
line going through two different vanishing points of lines
belonging to the same plane. According to [1], the vanishing
point of a line is the intersection of a parallel line passing
through the camera center with the image plane. In [1] it
is demonstrated that under a projective camera P = [K|I] the
vanishing point v of a line is imaged as:

v = Kd (4)

being d a bound vector representing the direction of the line.
As can be deduced, for a particular camera, the vanishing
poing of a line only depends on its direction. Thus, in order
to get two different vanishing points of lines belonging a
particular plane, it is necessary to use intersecting lines.

Given a vector n′ normal to the plane of interest π (usually
(0,1,0)) and a camera K whose extrinsic parameters are
known, such directions can be easily calculated. The extrinsics
parameters are needed to transform n′ to the frame of reference
of the camera, hereafter n. Thus, the two directions can be
computed as:

d1(x) = +2000 (5a)
d2(x) = −2000 (5b)
d1(z) = 10000 (5c)
d2(z) = 10000 (5d)
d1(y) = d1(z)n(z)/n(y)+d1(x)n(x)/n(y) (5e)
d2(y) = d2(z)n(z)/n(y)+d2(x)n(x)/n(y) (5f)

V. EXPERIMENTAL RESULTS

The described system leads to a binary image which can be
easily used for navigation. The floor boundary can be calcu-
lated by scanning the columns of the binary image bottom-up,
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constructing a polyline with the first occurrences of obstacle
pixels in the image. Also, if the extrinsic camera parameters
are known, assuming that obstacle pixels are near the floor, the
binary image can be mapped into world coordinates. With the
binary image mapped to world coordinates, a laser measure
can be estimated and thus, local navigation can be solved
by using any of the existing range-based algorithms such as
VFH+ or Potential Fields[11].

Figures 8, 9 and 10 are examples of the output of the
obstacle detection system. The left obstacle of figure 8 and
both obstacles of figure 10 are detected by both geometric-
based and appearance-based algorithms. The wall at the right
of figure 8, only has texture at its bottom, which actually
lies on the floor plane, thus, it can only be detected by its
appearance. The system is also able to discard the planar
objects lying on the floor which appear on figures 9 and 10. In
all of these figures floor plane is represented by light colored
lines and obstacles are represented by dark ones.

The rest of the section will introduce the robot platform
used and the results of the experiments which lead us to the
conclusions that follow in section VI.

A. Description of the used robot platform

The obstacle detection system has been tested on RobEx, a
low-cost differential robot platform developed at the Robotics
and Artificial Vision Laboratory of the University of Ex-
tremadura, previously used and described in[16]. The cameras
are two USB webcams working at 20Hz. Both cameras are
mounted on a three degrees of freedom head system. The
computation is done on-board in real-time by a laptop carried
by the robot. Even using a low cost robot and cheap cameras,
the robot is able to navigate autonomously in real-time on a
wide variety of environments. The robot is shown in figure 7.

Fig. 7: RobEx is the robot we used in our experiments.

As seen in section II, light reflections depend on the
point of view of the camera, so they may lead to a wrong
classification. Despite the impact of light reflections on the
geometry algorithm is minimized using the second test, it
may not be enough depending on the material of the floor.
A useful property of electromagnetic waves, such as light,
is that when they are reflected in a planar surface, they get

polarized at some extent. We use this phenomenon to decrease
the appearance of these reflections on the images by providing
the cameras with circular polarizing filters, which remove
polarized light (e.g. light reflections on the floor). Reflections
are closer to full polarization as they approach the so called
Brewster’s angle[14], which depends, in this case, on the
refractive index of air and floor. Although light at angles
far from the Brewster’s angle are only partially polarized
and hence the polarizing filters do not remove the reflections
completely, they have been proved to be helpful.

B. Single vs. Multiple cue navigation

Single cue navigation was performed on both structured and
unstructured environments. The results obtained with the color
based approach outperformed the ones obtained with previous
similar methods, but it is still not reliable by itself. Ground
surfaces and obstacles sometimes share the same color, specif-
ically when the scene is highly or barely illuminated.

Results obtained with the geometric approach clearly out-
performed the ones obtained with previous similar methods.
The overhead of the second test is negligible, as it is done
only on candidate windows. In spite that the geometric ob-
stacle detection is enough on unstructured environment where
untextured image areas are very rare (with exception of the sky
which is not an obstacle), on structured environments may be
problematic.

Fig. 8: The obstacle and the wall are detected.

C. Sixty minutes challenge using multiple cues

When the obstacle detection system development was
started, a thirty minutes challenge was established as a measure
of reliability. The challenge was passed in exceed when using
cue fusion. In fact, it has passed several times a sixty minutes
challenge. With geometric single-cue navigation, the challenge
was also passed in unstructured environments (textured) but it
failed in structured scenarios with untextured walls. On single
cue navigation, the results depended heavily on the color of
the ground and the obstacles.

The scenario in which the sixty minutes tests have been
succesfully accomplished is a specially tailored environment
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Fig. 9: Both, the paper sheet and the landmark, are discarded
as obstacles.

Fig. 10: Obstacles are detected, the paper sheet lying on the
floor is discarded.

with tricky obstacles and non-obstacle objects with different
heights, shapes and colors, as well as light reflections. A
picture of this environment can be seen in figure 11, where
the trajectory of a 7-minute wander is also shown.

D. Real time homography estimation

Due to the problems seen in II, specifically camera-camera
desynchronization, camera-head position sensor desynchro-
nization, and stereo head pose uncertainty, the approaches in
[6], [15] are error prone when using motorized stereo heads.
Because of the second test of the geometric classifier, our
method discards false positives with reasonable desynchro-
nizations or pose estimation errors.

In our experiments, the real time homography estimation
performed successfully even with rough camera calibrations.

VI. CONCLUSIONS

In this paper we have presented two improvements to
previous single cue detectors and a new technique for merging
their outputs. The new single cue detectors, appearance and
geometry based, outperform their previous counterparts. In ad-
dition, the proposed method for cue fusion clearly outperforms

Fig. 11: RobEx robot trajectory using a naive wandering
algorithm.

any single cue detector, as well as the multiple-cue method
detailed in [6]. Due to the variety of obstacles present in the
tests, we have been able to demonstrate that our approach
allows the robot to navigate through a wide repertoire of
conditions. The computation is light enough to be carried in
real-time on an average laptop, coexisting with other heavier
software components.

In order to improve significantly the system performance,
our view is that it will be required a richer environment
representation. The only situations in which the algorithm does
not work as it would be desirable is when facing untextured
obstacles with the same color as the ground (see picture 2)
and with low height obstacles, no matter their color, with
very little or no texture and a rounded shape (so that the
obstacle is imaged in the same way as a planar object would).
Generally these situations can be easily overcome with a
dense, symbolic, geometric representation of the environment
that can only be achieved using knowledge-based modelling
techniques in conjunction with state-estimation algorithms.
Steps are being taken towards this goal.
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